Explain why the following sets of three-by-one matrices (with real number scalars) are vector spaces:
Sol: 根據定義要確認 vector space 的 8 個條件, 其中只需確定 $\mathbf{0}$ 和 $-\mathbf{v}$ is closed 即可, 其他性質很明顯成立
從定義也可以知道, if $c_1\mathbf{u}_1+c_2\mathbf{u}_2+...+c_n\mathbf{u}_n=\mathbf{0}$, 存在一解 $c_1\neq0,c_2=c_3=...c_n=0$, 則 $u_1=\mathbf{0}$.
得到 $\mathbf{0}$ 跟任何 vectors 都是 linear dependent.
可以利用 rref (reduce row echelon form) 來確認矩陣可逆性判斷是否線性獨立
Which one of the following is an orthonormal basis for the vector space of all three-by-one matrices with the sum of all rows equal to zero?