Also check out this 補充: Conservative of a Vector Field
If $\vec{F}$ is a conservative vector field 表示寫成某個 scalar field $V$ 的 gradient, i.e. $\vec{F}=-\nabla V$, 所以
$$ \int_C\vec{F}\cdot d\vec{r}=-\int_C\nabla V\cdot d\vec{r} $$
由 gradient theorem 知道 $dV=\nabla V\cdot d\vec{r}$ (directional deravitive) 所以
$$ =-\int_C dV = -(V_f-V_i) $$
再由 work energy theorem 知道
$$ \int_C\vec{F}\cdot d\vec{r}=T_f-T_i,\quad\text{where }T=\frac{1}{2}m|\vec{v}|^2 $$
所以得到 conservation of energy
$$ -(V_f-V_i)=T_f-T_i \\ \Longrightarrow T_i+V_i=T_f+V_f $$
[Lecture 17: Gradient | Lecture 17](https://bobondemon.notion.site/Lecture-17-Gradient-Lecture-17-143edc3d531d80a3a954d8c22304f70b) 我們知道
$$
\nabla\left(\frac{1}{r}\right) = -\frac{\vec{r}}{r^3} $$
所以可以得到 potential scalar field 為
$$ V=-G\frac{mM}{r} $$