Let $a_j,b_j\geq0$, $\forall j=1,...,n$, and $p,q>1$ s.t. ${1\over p}+{1\over q}=1$. Then
$$ \sum_{j=1}^n a_jb_j\leq \left(\sum_{j=1}^n a_j^p\right)^{1/p} \left(\sum_{j=1}^n b_j^q\right)^{1/q} $$
可以這麼記 $|\langle f,g \rangle|_1\leq\|f\|_p\cdot\|g\|_q$
For $p\geq1$, $v=(v_1,...,v_n)\in\mathbb{R}^n$, define
$$ \|v\|p=\left(\sum{j=1}^n|v_j|^p\right)^{1/p} $$
For $x,y\in\mathbb{R}^n$, define
$$ <x,y>=\sum_{j=1}^n x_jy_j $$
For $x\in\mathbb{R}^n$, 且 $p$ is conjugate number of $q$ and vice versa. (i.e. $p,q>1$ s.t. ${1\over p}+{1\over q}=1$), 則
$$ \begin{align} \|x\|p=\sup{\|y\|_q=1}\{|\langle x,y\rangle |\} \end{align} $$
Assume $p\geq1$. Then for any $x,y\in\mathbb{R}^n$ we have
$$ \|x+y\|_p\leq\|x\|_p+\|y\|_p $$
Let $V$ be a vector space over $\mathbb{R}$. If mapping $N:V\rightarrow\mathbb{R}$ which satisfies the following conditions:
Then the mapping is called a norm on $V$ and the pair $(V,N)$ is called a normed vector space
On $\mathbb{R}^n$ we define $\|v\|_p=\left(\sum_j |v_j|^p\right)^{1/p}$, then
Hence $\|\cdot\|_p$ is a norm