Let $X$ be a nonempty set
A mapping
$d: X \times X \rightarrow \mathbb{R}$
is said to be a metric of $X$ if it satisfies:
We denote $(X,d)$ as a metric space
$x=(x_1,x_2,...,x_n)\in\mathbb{R}^n$, $y=(y_1,y_2,...,y_n)\in\mathbb{R}^n$.
Define $d_e(x,y)=\sqrt{\sum_{k=1}^n(x_k-y_k)^2}$
則 $d_e$ 是 metric on $\mathbb{R}^n$, 稱 Euclidean metric
Let $X$ be a nonempty set. On $X$, define
$$ d(a,b)=\left\{ \begin{array}{cl} 0, & \text{if } a=b \\ 1, & \text{else } a\neq b \\ \end{array}\right. $$
則 $d$ 是 metric on $X$, 稱 discrete metric
On $\mathbb{R}^2$, for $\overrightarrow{\alpha_1}=(x_1,y_1)$, $\overrightarrow{\alpha_2}=(x_2,y_2)$, define
$$ d_1(\overrightarrow{\alpha_1},\overrightarrow{\alpha_2})=\|\overrightarrow{\alpha_1}-\overrightarrow{\alpha_2}\|_1=|x_1-x_2|+|y_1-y_2| $$
則 $d_1$ 是 metric on $\mathbb{R}^2$ (很好證)
Let $d_1$ and $d_2$ be two metrics on a nonempty set $X$.
We say that $d_1$ and $d_2$ are equivalent $d_1\sim d_2$ if for any $x_0\in X$ and $\varepsilon>0$